Semi-Supervised Polarity Lexicon Induction
نویسندگان
چکیده
We present an extensive study on the problem of detecting polarity of words. We consider the polarity of a word to be either positive or negative. For example, words such as good, beautiful , and wonderful are considered as positive words; whereas words such as bad, ugly, and sad are considered negative words. We treat polarity detection as a semi-supervised label propagation problem in a graph. In the graph, each node represents a word whose polarity is to be determined. Each weighted edge encodes a relation that exists between two words. Each node (word) can have two labels: positive or negative. We study this framework in two different resource availability scenarios using WordNet and OpenOffice thesaurus when WordNet is not available. We report our results on three different languages: English, French, and Hindi. Our results indicate that label propagation improves significantly over the baseline and other semisupervised learning methods like Mincuts and Randomized Mincuts for this task.
منابع مشابه
Predictive Features in Semi-Supervised Learning for Polarity Classification and the Role of Adjectives
In opinion mining, there has been only very little work investigating semi-supervised machine learning on document-level polarity classification. We show that semi-supervised learning performs significantly better than supervised learning when only few labeled data are available. Semi-supervised polarity classifiers rely on a predictive feature set. (Semi-)Manually built polarity lexicons are o...
متن کاملA multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detection
Due to the huge volume and linguistic variation of data shared online, accurate detection of the sentiment of a message (polarity detection) can no longer rely on human assessors or through simple lexicon keyword matching. This paper presents a semi-supervised approach in constructing essential toolkits for analysing the polarity of a localised scarce-resource language, Singlish (Singaporean En...
متن کاملA Random Walk-Based Model for Identifying Semantic Orientation
Automatically identifying the sentiment polarity of words is a very important task that has been used as the essential building block of many natural language processing systems such as text classification, text filtering, product review analysis, survey response analysis, and on-line discussion mining. We propose a method for identifying the sentiment polarity of words that applies a Markov ra...
متن کاملExperiments on Hybrid Corpus-Based Sentiment Lexicon Acquisition
Numerous sentiment analysis applications make usage of a sentiment lexicon. In this paper we present experiments on hybrid sentiment lexicon acquisition. The approach is corpus-based and thus suitable for languages lacking general dictionarybased resources. The approach is a hybrid two-step process that combines semisupervised graph-based algorithms and supervised models. We evaluate the perfor...
متن کاملFuzzy Clustering for Semi-supervised Learning - Case Study: Construction of an Emotion Lexicon
We consider the task of semi-supervised classification: extending category labels from a small dataset of labeled examples to a much larger set. We show that, at least on our case study task, unsupervised fuzzy clustering of the unlabeled examples helps in obtaining the hard clusters. Namely, we used the membership values obtained with fuzzy clustering as additional features for hard clustering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009